// This file was auto-generated by ML.NET Model Builder. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using Microsoft.ML.Data; using Microsoft.ML.Trainers.FastTree; using Microsoft.ML.Trainers; using Microsoft.ML; namespace DeepTrace; public partial class MLModel1 { /// /// Retrains model using the pipeline generated as part of the training process. For more information on how to load data, see aka.ms/loaddata. /// /// /// /// public static ITransformer RetrainPipeline(MLContext mlContext, IDataView trainData) { var pipeline = BuildPipeline(mlContext); var model = pipeline.Fit(trainData); return model; } /// /// build the pipeline that is used from model builder. Use this function to retrain model. /// /// /// public static IEstimator BuildPipeline(MLContext mlContext) { // Data process configuration with pipeline data transformations var pipeline = mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q1max",outputColumnName:@"Q1max") .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q1avg",outputColumnName:@"Q1avg")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q1mean",outputColumnName:@"Q1mean")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q2min",outputColumnName:@"Q2min")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q2max",outputColumnName:@"Q2max")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q2avg",outputColumnName:@"Q2avg")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q2mean",outputColumnName:@"Q2mean")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q3min",outputColumnName:@"Q3min")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q3max",outputColumnName:@"Q3max")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q3avg",outputColumnName:@"Q3avg")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q3mean",outputColumnName:@"Q3mean")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q4max",outputColumnName:@"Q4max")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q4avg",outputColumnName:@"Q4avg")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q4mean",outputColumnName:@"Q4mean")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q5min",outputColumnName:@"Q5min")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q5max",outputColumnName:@"Q5max")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q5avg",outputColumnName:@"Q5avg")) .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName:@"Q5mean",outputColumnName:@"Q5mean")) .Append(mlContext.Transforms.Concatenate(@"Features", new []{@"Q1max",@"Q1avg",@"Q1mean",@"Q2min",@"Q2max",@"Q2avg",@"Q2mean",@"Q3min",@"Q3max",@"Q3avg",@"Q3mean",@"Q4max",@"Q4avg",@"Q4mean",@"Q5min",@"Q5max",@"Q5avg",@"Q5mean"})) .Append(mlContext.Transforms.Conversion.MapValueToKey(outputColumnName:@"Name",inputColumnName:@"Name")) .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryEstimator:mlContext.BinaryClassification.Trainers.FastTree(new FastTreeBinaryTrainer.Options(){NumberOfLeaves=33,MinimumExampleCountPerLeaf=14,NumberOfTrees=4,MaximumBinCountPerFeature=1022,FeatureFraction=0.99999999,LearningRate=0.757926844134433,LabelColumnName=@"Name",FeatureColumnName=@"Features"}),labelColumnName: @"Name")) .Append(mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName:@"PredictedLabel",inputColumnName:@"PredictedLabel")); return pipeline; } }