DEEP-13, DEEP-39 AI Model completely reimplemented. Dashboard UI implemented. Namespace style changed

This commit is contained in:
Andrey Shabarshov 2023-07-30 16:20:41 +01:00
parent af6c75a5ac
commit bfb3de9331
36 changed files with 1180 additions and 1088 deletions

View File

@ -2,12 +2,12 @@
using Microsoft.AspNetCore.Mvc; using Microsoft.AspNetCore.Mvc;
using System.Text; using System.Text;
namespace DeepTrace.Controllers namespace DeepTrace.Controllers;
[ApiController]
[Route("api/[controller]")]
public class DownloadController : Controller
{ {
[ApiController]
[Route("api/[controller]")]
public class DownloadController : Controller
{
private readonly IModelStorageService _modelService; private readonly IModelStorageService _modelService;
public DownloadController(IModelStorageService modelService) public DownloadController(IModelStorageService modelService)
@ -27,5 +27,4 @@ namespace DeepTrace.Controllers
FileDownloadName = modelName+".csv" FileDownloadName = modelName+".csv"
}; };
} }
}
} }

View File

@ -20,15 +20,15 @@
</DialogActions> </DialogActions>
</MudDialog> </MudDialog>
@code { @code {
[CascadingParameter] MudDialogInstance? MudDialog { get; set; } [CascadingParameter] MudDialogInstance? MudDialog { get; set; }
[Parameter] public bool AllowCancel { get; set; } [Parameter] public bool AllowCancel { get; set; }
[Parameter] public string Text { get; set; } = ""; [Parameter] public string Text { get; set; } = "";
[Parameter] public bool IsYesNoCancel { get; set; } = false; [Parameter] public bool IsYesNoCancel { get; set; } = false;
void Submit() => MudDialog?.Close(DialogResult.Ok(true)); void Submit() => MudDialog?.Close(DialogResult.Ok(true));
void Cancel() => MudDialog?.Cancel(); void Cancel() => MudDialog?.Cancel();
void Yes() => MudDialog?.Close(DialogResult.Ok(true)); void Yes() => MudDialog?.Close(DialogResult.Ok(true));
void No() => MudDialog?.Close(DialogResult.Ok(false)); void No() => MudDialog?.Close(DialogResult.Ok(false));
} }

View File

@ -7,10 +7,16 @@
@inject IDialogService DialogService @inject IDialogService DialogService
@inject IModelStorageService ModelService @inject IModelStorageService ModelService
@inject ITrainedModelStorageService TrainedModelService @inject ITrainedModelStorageService TrainedModelService
@inject ILogger<MLProcessor> MLProcessorLogger
@inject ILogger<ModelCard> Logger @inject ILogger<ModelCard> Logger
@inject IMLProcessorFactory MlProcessorFactory
<MudCard Class="mb-3"> <style>
.card {
max-width: 250pt;
}
</style>
<MudCard Class="card mb-3">
<MudCardHeader> <MudCardHeader>
<CardHeaderContent> <CardHeaderContent>
<MudText Typo="Typo.h6">@Model?.Name</MudText> <MudText Typo="Typo.h6">@Model?.Name</MudText>
@ -21,6 +27,7 @@
</MudCardHeader> </MudCardHeader>
<MudCardContent> <MudCardContent>
<MudText>Current state: @_prediction.PredictedLabel</MudText> <MudText>Current state: @_prediction.PredictedLabel</MudText>
<MudText>@_updated.ToString("HH:mm:ss")</MudText>
</MudCardContent> </MudCardContent>
</MudCard> </MudCard>
@ -30,6 +37,8 @@
private ModelDefinition _modelDefinition = new(); private ModelDefinition _modelDefinition = new();
private Prediction _prediction = new(); private Prediction _prediction = new();
private IMLProcessor? _mlProcessor;
private DateTime _updated = DateTime.MinValue;
protected override async Task OnAfterRenderAsync(bool firstRender) protected override async Task OnAfterRenderAsync(bool firstRender)
{ {
@ -38,6 +47,7 @@
return; return;
} }
_modelDefinition = (await ModelService.Load(Model.Id)) ?? _modelDefinition; _modelDefinition = (await ModelService.Load(Model.Id)) ?? _modelDefinition;
_mlProcessor = MlProcessorFactory.Create();
#pragma warning disable CS4014 #pragma warning disable CS4014
Task.Run(PredictionLoop); Task.Run(PredictionLoop);
@ -87,15 +97,20 @@
await PredictAnomaly(startDate, endDate); await PredictAnomaly(startDate, endDate);
startDate = endDate; startDate = endDate;
} }
catch(Exception) catch(Exception e)
{ {
//ignore Logger.LogError(e, e.Message);
} }
} }
} }
private async Task PredictAnomaly(DateTime startDate, DateTime endDate) private async Task PredictAnomaly(DateTime startDate, DateTime endDate)
{ {
if (Model == null || !Model.IsEnabled)
{
_prediction = new Prediction { PredictedLabel = "Idle" };
return;
}
// use automatic step value to always request 500 elements // use automatic step value to always request 500 elements
var seconds = (endDate - startDate).TotalSeconds / 500.0; var seconds = (endDate - startDate).TotalSeconds / 500.0;
@ -150,8 +165,9 @@
); );
} }
var mlProcessor = new MLProcessor(MLProcessorLogger); _prediction = await _mlProcessor!.Predict(Model, _modelDefinition, data);
_prediction = await mlProcessor.Predict(Model, _modelDefinition, data); _updated = DateTime.Now;
await InvokeAsync(StateHasChanged);
} }
private async Task ShowError(string text) private async Task ShowError(string text)

View File

@ -9,7 +9,7 @@
OnZoomed="OnZoomed" OnZoomed="OnZoomed"
> >
@foreach (var ts in _currentData.Series) @foreach (var ts in _currentData.Series)
{ {
<ApexPointSeries TItem="TimeSeries" <ApexPointSeries TItem="TimeSeries"
Name="@ts.Name" Name="@ts.Name"
Items="@ts.Data" Items="@ts.Data"
@ -18,41 +18,41 @@
YAggregate="@(e => (decimal)e.Sum(e => e.Value))" YAggregate="@(e => (decimal)e.Sum(e => e.Value))"
ShowDataLabels="false" ShowDataLabels="false"
/> />
} }
</ApexChart> </ApexChart>
@code { @code {
[CascadingParameter] [CascadingParameter]
protected bool IsDarkMode { get; set; } protected bool IsDarkMode { get; set; }
[Parameter] public TimeSeriesData? Data { get; set; } [Parameter] public TimeSeriesData? Data { get; set; }
[Parameter] public DateTime? MinDate { get; set; } [Parameter] public DateTime? MinDate { get; set; }
[Parameter] public DateTime? MaxDate { get; set; } [Parameter] public DateTime? MaxDate { get; set; }
[Parameter] public EventCallback<DateTime?> MinDateChanged { get; set; } [Parameter] public EventCallback<DateTime?> MinDateChanged { get; set; }
[Parameter] public EventCallback<DateTime?> MaxDateChanged { get; set; } [Parameter] public EventCallback<DateTime?> MaxDateChanged { get; set; }
private ApexChart<TimeSeries>? _chart; private ApexChart<TimeSeries>? _chart;
private ApexChartOptions<TimeSeries>? _options; private ApexChartOptions<TimeSeries>? _options;
private TimeSeriesData _currentData = new() { Series = { new () } }; private TimeSeriesData _currentData = new() { Series = { new () } };
protected override void OnInitialized() protected override void OnInitialized()
{ {
_options = CreateOptions(); _options = CreateOptions();
base.OnInitialized(); base.OnInitialized();
} }
protected override async Task OnParametersSetAsync() protected override async Task OnParametersSetAsync()
{ {
Console.WriteLine("OnParametersSet"); Console.WriteLine("OnParametersSet");
await UpdateChart(); await UpdateChart();
await base.OnParametersSetAsync(); await base.OnParametersSetAsync();
} }
private async Task UpdateChart() private async Task UpdateChart()
{ {
if (Data == _currentData) if (Data == _currentData)
return; return;
@ -67,10 +67,10 @@
await _chart!.UpdateOptionsAsync(true, true, true); await _chart!.UpdateOptionsAsync(true, true, true);
await InvokeAsync(StateHasChanged); await InvokeAsync(StateHasChanged);
} }
private ApexChartOptions<TimeSeries> CreateOptions() private ApexChartOptions<TimeSeries> CreateOptions()
{ {
var backgroundColor = IsDarkMode ? "var(--mud-palette-surface)" : "#f3f3f3"; var backgroundColor = IsDarkMode ? "var(--mud-palette-surface)" : "#f3f3f3";
var gridColor = IsDarkMode ? "var(--mud-palette-drawer-background)" : "#f3f3f3"; var gridColor = IsDarkMode ? "var(--mud-palette-drawer-background)" : "#f3f3f3";
var borderColor = IsDarkMode ? "var(--mud-palette-text-primary)" : "#e7e7e7"; var borderColor = IsDarkMode ? "var(--mud-palette-text-primary)" : "#e7e7e7";
@ -151,10 +151,10 @@
}; };
return options; return options;
} }
private void OnZoomed(ZoomedData<TimeSeries> zoomedData) private void OnZoomed(ZoomedData<TimeSeries> zoomedData)
{ {
if (zoomedData.XAxis?.Min == null && zoomedData.XAxis?.Max == null) if (zoomedData.XAxis?.Min == null && zoomedData.XAxis?.Max == null)
return; return;
@ -176,6 +176,6 @@
MaxDate = xMax.UtcDateTime; MaxDate = xMax.UtcDateTime;
MaxDateChanged.InvokeAsync(MaxDate); MaxDateChanged.InvokeAsync(MaxDate);
} }
} }

View File

@ -14,12 +14,12 @@
<h4>@Text</h4> <h4>@Text</h4>
<MudTextField T="string" ReadOnly="true" Text="@_progressText"></MudTextField> <MudTextField T="string" ReadOnly="true" Text="@_progressText"></MudTextField>
@if (_isTraining == false) @if (_isTraining == false && _evaluationMetrics != null)
{ {
<MudText>MicroAccuracy: @_evaluationMetrics!.MicroAccuracy.ToString("N2")</MudText> <MudText>MicroAccuracy: @_evaluationMetrics.MicroAccuracy.ToString("N6")</MudText>
<MudText>MacroAccuracy: @_evaluationMetrics!.MacroAccuracy.ToString("N2")</MudText> <MudText>MacroAccuracy: @_evaluationMetrics.MacroAccuracy.ToString("N6")</MudText>
<MudText>LogLoss: @_evaluationMetrics!.LogLoss.ToString("N2")</MudText> <MudText>LogLoss: @_evaluationMetrics.LogLoss.ToString("N6")</MudText>
<MudText>LogLossReduction: @_evaluationMetrics!.LogLossReduction.ToString("N2")</MudText> <MudText>LogLossReduction: @_evaluationMetrics.LogLossReduction.ToString("N6")</MudText>
} }
@ -29,32 +29,43 @@
</DialogActions> </DialogActions>
</MudDialog> </MudDialog>
@code { @code {
[CascadingParameter] MudDialogInstance? MudDialog { get; set; } [CascadingParameter] MudDialogInstance? MudDialog { get; set; }
[Parameter] public MLProcessor? Processor { get; set; } [Parameter] public MLProcessor? Processor { get; set; }
[Parameter] public ModelDefinition? Model { get; set; } [Parameter] public ModelDefinition? Model { get; set; }
[Parameter] public string Text { get; set; } = ""; [Parameter] public string Text { get; set; } = "";
private string _progressText = ""; private string _progressText = "";
private bool _isTraining = true; private bool _isTraining = true;
private MLEvaluationMetrics? _evaluationMetrics; private MLEvaluationMetrics? _evaluationMetrics;
void Submit() => MudDialog?.Close(DialogResult.Ok(true)); void Submit() => MudDialog?.Close(DialogResult.Ok(true));
protected override async Task OnAfterRenderAsync(bool firstRender) protected override async Task OnAfterRenderAsync(bool firstRender)
{ {
if (!firstRender || Processor==null || Model==null) if (!firstRender || Processor==null || Model==null)
{ {
return; return;
} }
try
{
_evaluationMetrics = await Processor.Train(Model, UpdateProgress); _evaluationMetrics = await Processor.Train(Model, UpdateProgress);
}
catch (Exception e)
{
_progressText = "ERROR: " + e.Message;
}
finally
{
_isTraining = false; _isTraining = false;
await InvokeAsync(StateHasChanged); await InvokeAsync(StateHasChanged);
} }
}
private async void UpdateProgress(string message) private async void UpdateProgress(string message)
{ {
_progressText = message; _progressText = message;
await InvokeAsync(StateHasChanged); await InvokeAsync(StateHasChanged);
} }
} }

View File

@ -29,4 +29,55 @@ public class DataSourceDefinition
public string Description { get; set; } = string.Empty; public string Description { get; set; } = string.Empty;
public override string ToString() => Name; public override string ToString() => Name;
public List<string> GetColumnNames()
{
var measureNames = new[] { "min", "max", "avg", "mean" };
var columnNames = new List<string>();
foreach (var item in Queries)
{
columnNames.AddRange(measureNames.Select(x => $"{item.Query}_{x}"));
}
return columnNames;
}
public static string ConvertToCsv(List<TimeSeriesDataSet> source)
{
var data = "";
for (var i = 0; i < source.Count; i++)
{
var queryData = source[i];
var min = queryData.Data.Min(x => x.Value);
var max = queryData.Data.Max(x => x.Value);
var avg = queryData.Data.Average(x => x.Value);
var mean = queryData.Data.Sum(x => x.Value) / queryData.Data.Count;
data += min + "," + max + "," + avg + "," + mean + ",";
}
return data.TrimEnd(',');
}
public static float[] ToFeatures(List<TimeSeriesDataSet> source)
{
var data = new float[source.Count * 4];
for (var i = 0; i < source.Count; i++)
{
var queryData = source[i];
var min = queryData.Data.Min(x => x.Value);
var max = queryData.Data.Max(x => x.Value);
var avg = queryData.Data.Average(x => x.Value);
var mean = queryData.Data.Sum(x => x.Value) / queryData.Data.Count;
data[i*4 + 0] = min;
data[i*4 + 1] = max;
data[i*4 + 2] = avg;
data[i*4 + 3] = mean;
}
return data;
}
} }

View File

@ -1,7 +1,7 @@
namespace DeepTrace.Data namespace DeepTrace.Data;
public class IntervalDefinition
{ {
public class IntervalDefinition
{
public IntervalDefinition() { } public IntervalDefinition() { }
public IntervalDefinition(DateTime from, DateTime to, string name) public IntervalDefinition(DateTime from, DateTime to, string name)
{ {
@ -18,5 +18,4 @@
public List<TimeSeriesDataSet> Data { get; set; } = new(); public List<TimeSeriesDataSet> Data { get; set; } = new();
}
} }

View File

@ -5,10 +5,12 @@ using System;
using System.Linq; using System.Linq;
using System.IO; using System.IO;
using System.Collections.Generic; using System.Collections.Generic;
namespace DeepTrace namespace DeepTrace;
#pragma warning disable CS8618 // Non-nullable field must contain a non-null value when exiting constructor. Consider declaring as nullable.
public partial class MLModel1
{ {
public partial class MLModel1
{
/// <summary> /// <summary>
/// model input class for MLModel1. /// model input class for MLModel1.
/// </summary> /// </summary>
@ -164,6 +166,8 @@ namespace DeepTrace
#endregion #endregion
#pragma warning restore CS8618 // Non-nullable field must contain a non-null value when exiting constructor. Consider declaring as nullable.
private static string MLNetModelPath = Path.GetFullPath("MLModel1.zip"); private static string MLNetModelPath = Path.GetFullPath("MLModel1.zip");
public static readonly Lazy<PredictionEngine<ModelInput, ModelOutput>> PredictEngine = new Lazy<PredictionEngine<ModelInput, ModelOutput>>(() => CreatePredictEngine(), true); public static readonly Lazy<PredictionEngine<ModelInput, ModelOutput>> PredictEngine = new Lazy<PredictionEngine<ModelInput, ModelOutput>>(() => CreatePredictEngine(), true);
@ -185,5 +189,4 @@ namespace DeepTrace
ITransformer mlModel = mlContext.Model.Load(MLNetModelPath, out var _); ITransformer mlModel = mlContext.Model.Load(MLNetModelPath, out var _);
return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel); return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);
} }
}
} }

View File

@ -9,10 +9,10 @@ using Microsoft.ML.Trainers.FastTree;
using Microsoft.ML.Trainers; using Microsoft.ML.Trainers;
using Microsoft.ML; using Microsoft.ML;
namespace DeepTrace namespace DeepTrace;
public partial class MLModel1
{ {
public partial class MLModel1
{
/// <summary> /// <summary>
/// Retrains model using the pipeline generated as part of the training process. For more information on how to load data, see aka.ms/loaddata. /// Retrains model using the pipeline generated as part of the training process. For more information on how to load data, see aka.ms/loaddata.
/// </summary> /// </summary>
@ -60,5 +60,4 @@ namespace DeepTrace
return pipeline; return pipeline;
} }
}
} }

View File

@ -2,6 +2,7 @@
using MongoDB.Bson.Serialization.Attributes; using MongoDB.Bson.Serialization.Attributes;
using MongoDB.Bson; using MongoDB.Bson;
using System.Text; using System.Text;
using DeepTrace.ML;
namespace DeepTrace.Data; namespace DeepTrace.Data;
@ -21,22 +22,15 @@ public class ModelDefinition
public string AIparameters { get; set; } = string.Empty; public string AIparameters { get; set; } = string.Empty;
public List<IntervalDefinition> IntervalDefinitionList { get; set; } = new(); public List<IntervalDefinition> IntervalDefinitionList { get; set; } = new();
public List<string> GetColumnNames() public List<string> GetColumnNames() => DataSource.GetColumnNames()
{ .Concat(new[] { "Name" })
var measureNames = new[] { "min", "max", "avg", "mean" }; .ToList()
var columnNames = new List<string>(); ;
foreach (var item in DataSource.Queries)
{
columnNames.AddRange(measureNames.Select(x => $"{item.Query}_{x}"));
}
columnNames.Add("Name");
return columnNames;
}
public string ToCsv() public string ToCsv()
{ {
var current = IntervalDefinitionList.First(); var current = IntervalDefinitionList.First();
var headers = string.Join(",", GetColumnNames().Select(x=>$"\"{x}\"")); var headers = string.Join(",", GetColumnNames().Select(x => $"\"{x}\""));
var writer = new StringBuilder(); var writer = new StringBuilder();
@ -45,30 +39,24 @@ public class ModelDefinition
foreach (var currentInterval in IntervalDefinitionList) foreach (var currentInterval in IntervalDefinitionList)
{ {
var source = currentInterval.Data; var source = currentInterval.Data;
string data = ConvertToCsv(source); string data = DataSourceDefinition.ConvertToCsv(source);
data += "," + currentInterval.Name; data += $",\"{currentInterval.Name}\"";
writer.AppendLine(data); writer.AppendLine(data);
} }
return writer.ToString(); return writer.ToString();
} }
public static string ConvertToCsv(List<TimeSeriesDataSet> source) public IEnumerable<MLInputData> ToInput()
{ {
var data = ""; foreach (var currentInterval in IntervalDefinitionList)
for (var i = 0; i < source.Count; i++)
{ {
var source = currentInterval.Data;
var queryData = source[i]; yield return new MLInputData
var min = queryData.Data.Min(x => x.Value); {
var max = queryData.Data.Max(x => x.Value); Features = DataSourceDefinition.ToFeatures(source),
var avg = queryData.Data.Average(x => x.Value); Label = currentInterval.Name
var mean = queryData.Data.Sum(x => x.Value) / queryData.Data.Count; };
data += min + "," + max + "," + avg + "," + mean + ",";
} }
return data+"\"ignoreMe\"";
} }
} }

View File

@ -4,9 +4,9 @@ namespace DeepTrace.Data;
public class Prediction public class Prediction
{ {
[ColumnName(@"PredictedLabel")] [ColumnName("PredictedLabel")]
public string PredictedLabel { get; set; } public string PredictedLabel { get; set; } = string.Empty;
[ColumnName(@"Score")] [ColumnName("Score")]
public float[] Score { get; set; } public float[] Score { get; set; } = Array.Empty<float>();
} }

View File

@ -1,14 +1,14 @@
using MongoDB.Bson.Serialization.Attributes; using MongoDB.Bson.Serialization.Attributes;
using MongoDB.Bson; using MongoDB.Bson;
namespace DeepTrace.Data namespace DeepTrace.Data;
public class TrainedModelDefinition
{ {
public class TrainedModelDefinition
{
[BsonId] [BsonId]
public ObjectId? Id { get; set; } public ObjectId? Id { get; set; }
public bool IsEnabled { get; set; } = false; public bool IsEnabled { get; set; } = false;
public string Name { get; set; } = string.Empty; public string Name { get; set; } = string.Empty;
public DataSourceDefinition? DataSource{ get; set;}
public byte[] Value { get; set; } = Array.Empty<byte>(); //base64 public byte[] Value { get; set; } = Array.Empty<byte>(); //base64
}
} }

View File

@ -1,47 +1,31 @@
using DeepTrace.Data; using DeepTrace.Data;
using Microsoft.ML; using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers; using Microsoft.ML.Trainers;
namespace DeepTrace.ML namespace DeepTrace.ML;
public class EstimatorBuilder : IEstimatorBuilder
{ {
public class EstimatorBuilder : IEstimatorBuilder
{
public IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model) public IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model)
{ {
IEstimator<ITransformer>? pipeline = null; return
var ds = model.DataSource; mlContext.Transforms.NormalizeMinMax(inputColumnName: nameof(MLInputData.Features),outputColumnName: "Features")
.Append(mlContext.Transforms.Conversion.MapValueToKey(inputColumnName: nameof(MLInputData.Label), outputColumnName: "Label"))
var measureNames = new[] { "min", "max", "avg", "mean" }; // .AppendCacheCheckpoint(mlContext)
var columnNames = new List<string>(); .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(
foreach (var item in ds.Queries) binaryEstimator: mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(
new LbfgsLogisticRegressionBinaryTrainer.Options
{ {
var estimators = measureNames.Select(x => mlContext.Transforms.Text.FeaturizeText(inputColumnName: $"{item.Query}_{x}", outputColumnName: $"{item.Query}_{x}")); L1Regularization = 1F,
columnNames.AddRange(measureNames.Select(x => $"{item.Query}_{x}")); L2Regularization = 1F,
LabelColumnName = "Label",
foreach (var e in estimators) FeatureColumnName = "Features"
{
if (pipeline == null)
{
pipeline = e;
}
else
{
pipeline = pipeline.Append(e);
}
} }
))
)
.Append(mlContext.Transforms.Conversion.MapKeyToValue(nameof(MLOutputData.PredictedLabel), inputColumnName: "PredictedLabel"));
} }
pipeline = pipeline!
.Append(mlContext.Transforms.Concatenate(@"Features", columnNames.ToArray()))
.Append(mlContext.Transforms.Conversion.MapValueToKey(outputColumnName: @"Name", inputColumnName: @"Name"))
.Append(mlContext.Transforms.NormalizeMinMax(@"Features", @"Features"))
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryEstimator: mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(new LbfgsLogisticRegressionBinaryTrainer.Options() { L1Regularization = 1F, L2Regularization = 1F, LabelColumnName = @"Name", FeatureColumnName = @"Features" }), labelColumnName: @"Name"))
.Append(mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: @"PredictedLabel", inputColumnName: @"PredictedLabel"));
return pipeline;
}
}
} }

View File

@ -1,10 +1,9 @@
using DeepTrace.Data; using DeepTrace.Data;
using Microsoft.ML; using Microsoft.ML;
namespace DeepTrace.ML namespace DeepTrace.ML;
public interface IEstimatorBuilder
{ {
public interface IEstimatorBuilder
{
IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model); IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model);
}
} }

View File

@ -10,3 +10,8 @@ public interface IMLProcessor
void Import(byte[] data); void Import(byte[] data);
Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data); Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data);
} }
public interface IMLProcessorFactory
{
IMLProcessor Create();
}

View File

@ -1,11 +1,10 @@
using PrometheusAPI; using PrometheusAPI;
namespace DeepTrace.ML namespace DeepTrace.ML;
public interface IMeasure
{ {
public interface IMeasure
{
public string Name { get; } public string Name { get; }
void Reset(); void Reset();
float Calculate(IEnumerable<TimeSeries> data); float Calculate(IEnumerable<TimeSeries> data);
}
} }

View File

@ -1,7 +1,7 @@
namespace DeepTrace.ML namespace DeepTrace.ML;
public class MLEvaluationMetrics
{ {
public class MLEvaluationMetrics
{
public MLEvaluationMetrics() public MLEvaluationMetrics()
{ {
@ -12,5 +12,4 @@
public double LogLoss { get; set; } public double LogLoss { get; set; }
public double LogLossReduction { get; set; } public double LogLossReduction { get; set; }
}
} }

View File

@ -7,6 +7,21 @@ namespace DeepTrace.ML;
public record ModelRecord(MLContext Context, DataViewSchema Schema, ITransformer Transformer); public record ModelRecord(MLContext Context, DataViewSchema Schema, ITransformer Transformer);
public class MLInputData
{
public string Label { get; set; } = "Normal operation";
public float[] Features { get; set; } = Array.Empty<float>();
}
public class MLOutputData
{
public string PredictedLabel { get; set; } = string.Empty;
public float[] Score { get; set; } = Array.Empty<float>();
}
public static class MLHelpers public static class MLHelpers
{ {
public static byte[] ExportSingleModel( ModelRecord model) public static byte[] ExportSingleModel( ModelRecord model)
@ -32,10 +47,22 @@ public static class MLHelpers
await File.WriteAllTextAsync(fileName, csv); await File.WriteAllTextAsync(fileName, csv);
return LoadFromCsv(mlContext, model, fileName); return (LoadFromCsv(mlContext, model, fileName), fileName);
} }
public static (IDataView View, string FileName) LoadFromCsv(MLContext mlContext, ModelDefinition model, string fileName) public static Task<IDataView> ToInput(MLContext mlContext, ModelDefinition model)
{
var input = model.ToInput().ToList();
// VectorType attribute with dynamic dimension
// https://github.com/dotnet/machinelearning/issues/164
var schemaDef = SchemaDefinition.Create(typeof(MLInputData));
schemaDef["Features"].ColumnType = new VectorDataViewType(NumberDataViewType.Single, input.First().Features.Length );
return Task.FromResult(mlContext.Data.LoadFromEnumerable(input, schemaDef));
}
public static IDataView LoadFromCsv(MLContext mlContext, ModelDefinition model, string fileName)
{ {
var columnNames = model.GetColumnNames(); var columnNames = model.GetColumnNames();
var columns = columnNames var columns = columnNames
@ -43,8 +70,14 @@ public static class MLHelpers
.ToArray() .ToArray()
; ;
var view = mlContext.Data.LoadFromTextFile(fileName, columns, separatorChar: ',', hasHeader: true, allowQuoting: true, trimWhitespace: true); var view = mlContext.Data.LoadFromTextFile(
fileName,
columns,
separatorChar: ',',
hasHeader: true,
allowQuoting: true,
trimWhitespace: true);
return (view, fileName); return view;
} }
} }

View File

@ -1,32 +1,51 @@
using DeepTrace.Data; using DeepTrace.Data;
using Microsoft.ML; using Microsoft.ML;
using Microsoft.ML.Data;
using PrometheusAPI;
using System.Data; using System.Data;
using static DeepTrace.MLModel1;
namespace DeepTrace.ML namespace DeepTrace.ML;
internal class MLProcessorFactory : IMLProcessorFactory
{ {
public class MLProcessor : IMLProcessor private readonly ILogger<MLProcessor> _logger;
private IEstimatorBuilder _estimatorBuilder;
public MLProcessorFactory(ILogger<MLProcessor> logger, IEstimatorBuilder estimatorBuilder)
{ {
_logger = logger;
_estimatorBuilder = estimatorBuilder;
}
public IMLProcessor Create() => new MLProcessor(_logger, _estimatorBuilder);
}
/// <summary>
/// Wrapper for ML.NET operations.
/// </summary>
public class MLProcessor : IMLProcessor
{
private readonly ILogger<MLProcessor> _logger;
private MLContext _mlContext = new MLContext(); private MLContext _mlContext = new MLContext();
private EstimatorBuilder _estimatorBuilder = new EstimatorBuilder(); private IEstimatorBuilder _estimatorBuilder;
private DataViewSchema? _schema; private DataViewSchema? _schema;
private ITransformer? _transformer; private ITransformer? _transformer;
private static string _signature = "DeepTrace-Model-v1-" + typeof(MLProcessor).Name; private static string _signature = "DeepTrace-Model-v1-" + typeof(MLProcessor).Name;
private readonly ILogger<MLProcessor> _logger; private PredictionEngine<MLInputData, MLOutputData>? _predictionEngine;
public MLProcessor(ILogger<MLProcessor> logger) public MLProcessor(ILogger<MLProcessor> logger, IEstimatorBuilder estimatorBuilder)
{ {
_logger = logger; _logger = logger;
_estimatorBuilder = estimatorBuilder;
} }
private string Name { get; set; } = "TestModel"; private string Name { get; set; } = "TestModel";
public async Task<MLEvaluationMetrics> Train(ModelDefinition modelDef, Action<string> log) public async Task<MLEvaluationMetrics> Train(ModelDefinition modelDef, Action<string> log)
{ {
_logger.LogInformation("Training started");
Name = modelDef.Name;
var pipeline = _estimatorBuilder.BuildPipeline(_mlContext, modelDef); var pipeline = _estimatorBuilder.BuildPipeline(_mlContext, modelDef);
var (data, filename) = await MLHelpers.Convert(_mlContext, modelDef); var data = await MLHelpers.ToInput(_mlContext, modelDef);
DataOperationsCatalog.TrainTestData dataSplit = _mlContext.Data.TrainTestSplit(data, testFraction: 0.2); DataOperationsCatalog.TrainTestData dataSplit = _mlContext.Data.TrainTestSplit(data, testFraction: 0.2);
@ -35,13 +54,13 @@ namespace DeepTrace.ML
{ {
_schema = data.Schema; _schema = data.Schema;
_transformer = pipeline.Fit(dataSplit.TrainSet); _transformer = pipeline.Fit(dataSplit.TrainSet);
return Evaluate(dataSplit.TestSet); return Evaluate(dataSplit.TestSet);
} }
finally finally
{ {
File.Delete(filename); _logger.LogInformation("Training finished");
} }
} }
private void LogEvents(Action<string> log, LoggingEventArgs e) private void LogEvents(Action<string> log, LoggingEventArgs e)
@ -56,8 +75,10 @@ namespace DeepTrace.ML
private MLEvaluationMetrics Evaluate(IDataView testData) private MLEvaluationMetrics Evaluate(IDataView testData)
{ {
// https://learn.microsoft.com/en-us/dotnet/api/microsoft.ml.standardtrainerscatalog.lbfgslogisticregression?view=ml-dotnet
var predictions = _transformer!.Transform(testData); var predictions = _transformer!.Transform(testData);
var metrics = _mlContext.MulticlassClassification.Evaluate(predictions, "Name"); var metrics = _mlContext.MulticlassClassification.Evaluate(predictions, nameof(MLInputData.Label));
var evaluationMetrics = new MLEvaluationMetrics() var evaluationMetrics = new MLEvaluationMetrics()
{ {
MicroAccuracy = metrics.MicroAccuracy, MicroAccuracy = metrics.MicroAccuracy,
@ -110,28 +131,25 @@ namespace DeepTrace.ML
(_mlContext, _schema, _transformer) = MLHelpers.ImportSingleModel(bytes); (_mlContext, _schema, _transformer) = MLHelpers.ImportSingleModel(bytes);
} }
public async Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data) public Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data)
{ {
Name = trainedModel.Name;
if (_transformer == null )
Import(trainedModel.Value); Import(trainedModel.Value);
var headers = string.Join(",", model.GetColumnNames().Select(x => $"\"{x}\""));
var row = ModelDefinition.ConvertToCsv(data);
var csv = headers+"\n"+row; if (_predictionEngine == null)
var fileName = Path.GetTempFileName();
try
{ {
await File.WriteAllTextAsync(fileName, csv); _predictionEngine = _mlContext.Model.CreatePredictionEngine<MLInputData, MLOutputData>(_transformer, _schema);
var (dataView, _) = MLHelpers.LoadFromCsv(_mlContext, model, fileName);
var predictionEngine = _mlContext.Model.CreatePredictionEngine<IDataView, Prediction>(_transformer);
var prediction = predictionEngine.Predict(dataView);
return prediction;
} }
finally
var input = new MLInputData
{ {
File.Delete(fileName); Features = DataSourceDefinition.ToFeatures(data)
} };
}
var prediction = _predictionEngine.Predict( input );
return Task.FromResult( new Prediction { PredictedLabel = prediction.PredictedLabel, Score = prediction.Score } );
} }
} }

View File

@ -1,9 +1,9 @@
using PrometheusAPI; using PrometheusAPI;
namespace DeepTrace.ML namespace DeepTrace.ML;
public class MeasureMin : IMeasure
{ {
public class MeasureMin : IMeasure
{
public string Name => "Min"; public string Name => "Min";
public float Calculate(IEnumerable<TimeSeries> data) => public float Calculate(IEnumerable<TimeSeries> data) =>
data data
@ -12,34 +12,34 @@ namespace DeepTrace.ML
; ;
public void Reset() { } public void Reset() { }
} }
public class MeasureMax : IMeasure public class MeasureMax : IMeasure
{ {
public string Name => "Max"; public string Name => "Max";
public float Calculate(IEnumerable<TimeSeries> data) => data.Max(x => x.Value); public float Calculate(IEnumerable<TimeSeries> data) => data.Max(x => x.Value);
public void Reset() { } public void Reset() { }
} }
public class MeasureAvg : IMeasure public class MeasureAvg : IMeasure
{ {
public string Name => "Avg"; public string Name => "Avg";
public float Calculate(IEnumerable<TimeSeries> data) => data.Average(x => x.Value); public float Calculate(IEnumerable<TimeSeries> data) => data.Average(x => x.Value);
public void Reset() { } public void Reset() { }
} }
/// <summary> /// <summary>
/// WARNING: Only works with fixed length interval /// WARNING: Only works with fixed length interval
/// </summary> /// </summary>
public class MeasureSum : IMeasure public class MeasureSum : IMeasure
{ {
public string Name => "Sum"; public string Name => "Sum";
public float Calculate(IEnumerable<TimeSeries> data) => data.Sum(x => x.Value); public float Calculate(IEnumerable<TimeSeries> data) => data.Sum(x => x.Value);
public void Reset() { } public void Reset() { }
} }
public class MeasureMedian : IMeasure public class MeasureMedian : IMeasure
{ {
public string Name => "Median"; public string Name => "Median";
public float Calculate(IEnumerable<TimeSeries> data) public float Calculate(IEnumerable<TimeSeries> data)
@ -47,10 +47,10 @@ namespace DeepTrace.ML
public void Reset() { } public void Reset() { }
} }
public class MeasureDiff<T> : IMeasure where T : IMeasure, new() public class MeasureDiff<T> : IMeasure where T : IMeasure, new()
{ {
private T _measure = new(); private T _measure = new();
public string Name => "Diff_"+_measure.Name; public string Name => "Diff_"+_measure.Name;
@ -75,15 +75,13 @@ namespace DeepTrace.ML
_measure.Reset(); _measure.Reset();
_prev = float.NaN; _prev = float.NaN;
} }
}
public class MeasureDiffMin : MeasureDiff<MeasureMin> { }
public class MeasureDiffMax : MeasureDiff<MeasureMax> { }
public class MeasureDiffAvg : MeasureDiff<MeasureAvg> { }
/// <summary>
/// WARNING: Only works with fixed length interval
/// </summary>
public class MeasureDiffSum : MeasureDiff<MeasureSum> { }
public class MeasureDiffMedian : MeasureDiff<MeasureMedian> { }
} }
public class MeasureDiffMin : MeasureDiff<MeasureMin> { }
public class MeasureDiffMax : MeasureDiff<MeasureMax> { }
public class MeasureDiffAvg : MeasureDiff<MeasureAvg> { }
/// <summary>
/// WARNING: Only works with fixed length interval
/// </summary>
public class MeasureDiffSum : MeasureDiff<MeasureSum> { }
public class MeasureDiffMedian : MeasureDiff<MeasureMedian> { }

View File

@ -58,8 +58,8 @@
int pos = i; int pos = i;
<MudItem xs="10"> <MudItem xs="10">
@*<MudTextField Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Variant="Variant.Text" InputType="InputType.Search" Lines="2" />*@ <MudTextField Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Variant="Variant.Text" InputType="InputType.Search" Lines="2" />
<MudAutocomplete Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Lines="1" Variant="Variant.Text" SearchFunc="@SearchForQuery"></MudAutocomplete> @*<MudAutocomplete Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Lines="1" Variant="Variant.Text" SearchFunc="@SearchForQuery"></MudAutocomplete>*@
</MudItem> </MudItem>
<MudItem xs="1"> <MudItem xs="1">
<MudIconButton Icon="@Icons.Material.Outlined.Add" Variant="Variant.Outlined" aria-label="add" OnClick="@(() => AddQuery(pos))" /> <MudIconButton Icon="@Icons.Material.Outlined.Add" Variant="Variant.Outlined" aria-label="add" OnClick="@(() => AddQuery(pos))" />

View File

@ -2,12 +2,12 @@
using Microsoft.AspNetCore.Mvc.RazorPages; using Microsoft.AspNetCore.Mvc.RazorPages;
using System.Diagnostics; using System.Diagnostics;
namespace DeepTrace.Pages namespace DeepTrace.Pages;
[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
[IgnoreAntiforgeryToken]
public class ErrorModel : PageModel
{ {
[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
[IgnoreAntiforgeryToken]
public class ErrorModel : PageModel
{
public string? RequestId { get; set; } public string? RequestId { get; set; }
public bool ShowRequestId => !string.IsNullOrEmpty(RequestId); public bool ShowRequestId => !string.IsNullOrEmpty(RequestId);
@ -23,5 +23,4 @@ namespace DeepTrace.Pages
{ {
RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier; RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;
} }
}
} }

View File

@ -14,9 +14,9 @@ Welcome to your new app.
@if (_trainedModels != null) @if (_trainedModels != null)
{ {
@foreach(TrainedModelDefinition model in _trainedModels) @foreach(TrainedModelDefinition model in _trainedModels)
{ {
<ModelCard Model="@model"/> <ModelCard Model="@model"/>
} }
} else } else
{ {
<MudText>Nothing to display</MudText> <MudText>Nothing to display</MudText>
@ -24,13 +24,13 @@ Welcome to your new app.
@code{ @code{
private List<TrainedModelDefinition> _trainedModels = new(); private List<TrainedModelDefinition> _trainedModels = new();
protected override async Task OnInitializedAsync() protected override async Task OnInitializedAsync()
{ {
base.OnInitialized(); base.OnInitialized();
_trainedModels = await TrainedModelService.Load(); _trainedModels = await TrainedModelService.Load();
} }
} }

View File

@ -18,7 +18,7 @@
@inject IEstimatorBuilder EstimatorBuilder @inject IEstimatorBuilder EstimatorBuilder
@inject NavigationManager NavManager @inject NavigationManager NavManager
@inject IJSRuntime Js @inject IJSRuntime Js
@inject ILogger<MLProcessor> MLProcessorLogger @inject IMLProcessorFactory MlProcessorFactory
<PageTitle>Training</PageTitle> <PageTitle>Training</PageTitle>
@ -531,14 +531,14 @@
private async Task HandleTrain() private async Task HandleTrain()
{ {
var mlProcessor = new MLProcessor(MLProcessorLogger);
MLProcessorLogger.LogInformation("Training started");
var options = new DialogOptions var options = new DialogOptions
{ {
CloseOnEscapeKey = true CloseOnEscapeKey = true
}; };
var parameters = new DialogParameters(); var parameters = new DialogParameters();
var mlProcessor = MlProcessorFactory.Create();
parameters.Add(nameof(Controls.TrainingDialog.Text), _modelForm!.CurrentModel.Name); parameters.Add(nameof(Controls.TrainingDialog.Text), _modelForm!.CurrentModel.Name);
parameters.Add(nameof(Controls.TrainingDialog.Processor), mlProcessor); parameters.Add(nameof(Controls.TrainingDialog.Processor), mlProcessor);
parameters.Add(nameof(Controls.TrainingDialog.Model), _modelForm.CurrentModel); parameters.Add(nameof(Controls.TrainingDialog.Model), _modelForm.CurrentModel);
@ -546,7 +546,6 @@
var d = DialogService.Show<Controls.TrainingDialog>("Training", parameters, options); var d = DialogService.Show<Controls.TrainingDialog>("Training", parameters, options);
var res = await d.Result; var res = await d.Result;
MLProcessorLogger.LogInformation("Training finished");
var bytes = mlProcessor.Export(); var bytes = mlProcessor.Export();
//save to Mongo //save to Mongo

View File

@ -29,6 +29,7 @@ builder.Services
.AddSingleton<IModelStorageService, ModelStorageService>() .AddSingleton<IModelStorageService, ModelStorageService>()
.AddSingleton<ITrainedModelStorageService, TrainedModelStorageService>() .AddSingleton<ITrainedModelStorageService, TrainedModelStorageService>()
.AddSingleton<IEstimatorBuilder, EstimatorBuilder>() .AddSingleton<IEstimatorBuilder, EstimatorBuilder>()
.AddSingleton<IMLProcessorFactory, MLProcessorFactory>()
; ;
var app = builder.Build(); var app = builder.Build();

View File

@ -1,10 +1,10 @@
using MongoDB.Bson; using MongoDB.Bson;
using MongoDB.Driver; using MongoDB.Driver;
namespace DeepTrace.Services namespace DeepTrace.Services;
public class DataSourceStorageService : IDataSourceStorageService
{ {
public class DataSourceStorageService : IDataSourceStorageService
{
private const string MongoDBDatabaseName = "DeepTrace"; private const string MongoDBDatabaseName = "DeepTrace";
private const string MongoDBCollection = "Sources"; private const string MongoDBCollection = "Sources";
@ -54,5 +54,4 @@ namespace DeepTrace.Services
await collection.DeleteOneAsync($"_id = {source.Id}"); await collection.DeleteOneAsync($"_id = {source.Id}");
} }
}
} }

View File

@ -2,10 +2,10 @@
using MongoDB.Bson.Serialization.Attributes; using MongoDB.Bson.Serialization.Attributes;
using MongoDB.Bson; using MongoDB.Bson;
namespace DeepTrace.Services namespace DeepTrace.Services;
public class DataSourceStorage : DataSourceDefinition, IEquatable<DataSourceStorage>
{ {
public class DataSourceStorage : DataSourceDefinition, IEquatable<DataSourceStorage>
{
[BsonId] [BsonId]
public ObjectId? Id { get; set; } public ObjectId? Id { get; set; }
@ -27,12 +27,11 @@ namespace DeepTrace.Services
{ {
return Id?.GetHashCode() ?? base.GetHashCode(); return Id?.GetHashCode() ?? base.GetHashCode();
} }
} }
public interface IDataSourceStorageService public interface IDataSourceStorageService
{ {
Task Delete(DataSourceStorage source, bool ignoreNotStored = false); Task Delete(DataSourceStorage source, bool ignoreNotStored = false);
Task<List<DataSourceStorage>> Load(); Task<List<DataSourceStorage>> Load();
Task Store(DataSourceStorage source); Task Store(DataSourceStorage source);
}
} }

View File

@ -3,14 +3,13 @@ using MongoDB.Bson;
using DeepTrace.Data; using DeepTrace.Data;
using System.Text; using System.Text;
namespace DeepTrace.Services namespace DeepTrace.Services;
{
public interface IModelStorageService
{ public interface IModelStorageService
{
Task Delete(ModelDefinition source, bool ignoreNotStored = false); Task Delete(ModelDefinition source, bool ignoreNotStored = false);
Task<List<ModelDefinition>> Load(); Task<List<ModelDefinition>> Load();
Task<ModelDefinition?> Load(BsonObjectId id); Task<ModelDefinition?> Load(BsonObjectId id);
Task Store(ModelDefinition source); Task Store(ModelDefinition source);
}
} }

View File

@ -1,11 +1,10 @@
using DeepTrace.Data; using DeepTrace.Data;
namespace DeepTrace.Services namespace DeepTrace.Services;
public interface ITrainedModelStorageService
{ {
public interface ITrainedModelStorageService
{
Task Delete(TrainedModelDefinition source, bool ignoreNotStored = false); Task Delete(TrainedModelDefinition source, bool ignoreNotStored = false);
Task<List<TrainedModelDefinition>> Load(); Task<List<TrainedModelDefinition>> Load();
Task Store(TrainedModelDefinition source); Task Store(TrainedModelDefinition source);
}
} }

View File

@ -2,10 +2,10 @@
using MongoDB.Bson; using MongoDB.Bson;
using MongoDB.Driver; using MongoDB.Driver;
namespace DeepTrace.Services namespace DeepTrace.Services;
public class ModelStorageService : IModelStorageService
{ {
public class ModelStorageService : IModelStorageService
{
private const string MongoDBDatabaseName = "DeepTrace"; private const string MongoDBDatabaseName = "DeepTrace";
private const string MongoDBCollection = "Models"; private const string MongoDBCollection = "Models";
@ -30,8 +30,9 @@ namespace DeepTrace.Services
{ {
var db = _client.GetDatabase(MongoDBDatabaseName); var db = _client.GetDatabase(MongoDBDatabaseName);
var collection = db.GetCollection<ModelDefinition>(MongoDBCollection); var collection = db.GetCollection<ModelDefinition>(MongoDBCollection);
var res = (await (await collection.FindAsync($"{{_id:ObjectId(\"{id}\")}}")).ToListAsync()).FirstOrDefault();
return res; var res = await (await collection.FindAsync($"{{ _id : ObjectId(\"{id}\") }}")).ToListAsync();
return res.FirstOrDefault();
} }
public async Task Store(ModelDefinition source) public async Task Store(ModelDefinition source)
@ -64,5 +65,4 @@ namespace DeepTrace.Services
await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id)); await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id));
} }
}
} }

View File

@ -2,10 +2,10 @@
using MongoDB.Bson; using MongoDB.Bson;
using MongoDB.Driver; using MongoDB.Driver;
namespace DeepTrace.Services namespace DeepTrace.Services;
public class TrainedModelStorageService: ITrainedModelStorageService
{ {
public class TrainedModelStorageService: ITrainedModelStorageService
{
private const string MongoDBDatabaseName = "DeepTrace"; private const string MongoDBDatabaseName = "DeepTrace";
private const string MongoDBCollection = "TrainedModels"; private const string MongoDBCollection = "TrainedModels";
@ -54,5 +54,4 @@ namespace DeepTrace.Services
await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id)); await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id));
} }
}
} }

View File

@ -10,7 +10,7 @@
</div> </div>
@code { @code {
// Demonstrates how a parent component can supply parameters // Demonstrates how a parent component can supply parameters
[Parameter] [Parameter]
public string? Title { get; set; } public string? Title { get; set; }
} }

View File

@ -6,10 +6,10 @@ using System.Text.Json.Serialization;
using System.Text.Json; using System.Text.Json;
using System.Threading.Tasks; using System.Threading.Tasks;
namespace PrometheusAPI namespace PrometheusAPI;
public static class JsonSetializerSetup
{ {
public static class JsonSetializerSetup
{
private static JsonSerializerOptions _options = new JsonSerializerOptions private static JsonSerializerOptions _options = new JsonSerializerOptions
{ {
AllowTrailingCommas = true, AllowTrailingCommas = true,
@ -21,5 +21,4 @@ namespace PrometheusAPI
}; };
public static JsonSerializerOptions Options => _options; public static JsonSerializerOptions Options => _options;
}
} }

View File

@ -1,9 +1,9 @@
using System.Text.Json; using System.Text.Json;
namespace PrometheusAPI namespace PrometheusAPI;
public class PrometheusClient
{ {
public class PrometheusClient
{
private readonly HttpClient _client; private readonly HttpClient _client;
public PrometheusClient(HttpClient client) public PrometheusClient(HttpClient client)
@ -115,5 +115,4 @@ namespace PrometheusAPI
} }
}
} }

View File

@ -1,10 +1,10 @@
using System.Text.Json; using System.Text.Json;
using System.Text.Json.Serialization; using System.Text.Json.Serialization;
namespace PrometheusAPI namespace PrometheusAPI;
internal class TimeSeriesCoverter : JsonConverter<TimeSeries?>
{ {
internal class TimeSeriesCoverter : JsonConverter<TimeSeries?>
{
public override TimeSeries? Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options) public override TimeSeries? Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
{ {
if (reader.TokenType != JsonTokenType.StartArray) if (reader.TokenType != JsonTokenType.StartArray)
@ -48,5 +48,4 @@ namespace PrometheusAPI
writer.WriteEndArray(); writer.WriteEndArray();
} }
}
} }