mirror of
https://github.com/NecroticBamboo/DeepTrace.git
synced 2025-12-21 11:21:51 +00:00
DEEP-13, DEEP-39 AI Model completely reimplemented. Dashboard UI implemented. Namespace style changed
This commit is contained in:
parent
af6c75a5ac
commit
bfb3de9331
@ -2,8 +2,8 @@
|
|||||||
using Microsoft.AspNetCore.Mvc;
|
using Microsoft.AspNetCore.Mvc;
|
||||||
using System.Text;
|
using System.Text;
|
||||||
|
|
||||||
namespace DeepTrace.Controllers
|
namespace DeepTrace.Controllers;
|
||||||
{
|
|
||||||
[ApiController]
|
[ApiController]
|
||||||
[Route("api/[controller]")]
|
[Route("api/[controller]")]
|
||||||
public class DownloadController : Controller
|
public class DownloadController : Controller
|
||||||
@ -28,4 +28,3 @@ namespace DeepTrace.Controllers
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -7,10 +7,16 @@
|
|||||||
@inject IDialogService DialogService
|
@inject IDialogService DialogService
|
||||||
@inject IModelStorageService ModelService
|
@inject IModelStorageService ModelService
|
||||||
@inject ITrainedModelStorageService TrainedModelService
|
@inject ITrainedModelStorageService TrainedModelService
|
||||||
@inject ILogger<MLProcessor> MLProcessorLogger
|
|
||||||
@inject ILogger<ModelCard> Logger
|
@inject ILogger<ModelCard> Logger
|
||||||
|
@inject IMLProcessorFactory MlProcessorFactory
|
||||||
|
|
||||||
<MudCard Class="mb-3">
|
<style>
|
||||||
|
.card {
|
||||||
|
max-width: 250pt;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
|
||||||
|
<MudCard Class="card mb-3">
|
||||||
<MudCardHeader>
|
<MudCardHeader>
|
||||||
<CardHeaderContent>
|
<CardHeaderContent>
|
||||||
<MudText Typo="Typo.h6">@Model?.Name</MudText>
|
<MudText Typo="Typo.h6">@Model?.Name</MudText>
|
||||||
@ -21,6 +27,7 @@
|
|||||||
</MudCardHeader>
|
</MudCardHeader>
|
||||||
<MudCardContent>
|
<MudCardContent>
|
||||||
<MudText>Current state: @_prediction.PredictedLabel</MudText>
|
<MudText>Current state: @_prediction.PredictedLabel</MudText>
|
||||||
|
<MudText>@_updated.ToString("HH:mm:ss")</MudText>
|
||||||
</MudCardContent>
|
</MudCardContent>
|
||||||
</MudCard>
|
</MudCard>
|
||||||
|
|
||||||
@ -30,6 +37,8 @@
|
|||||||
|
|
||||||
private ModelDefinition _modelDefinition = new();
|
private ModelDefinition _modelDefinition = new();
|
||||||
private Prediction _prediction = new();
|
private Prediction _prediction = new();
|
||||||
|
private IMLProcessor? _mlProcessor;
|
||||||
|
private DateTime _updated = DateTime.MinValue;
|
||||||
|
|
||||||
protected override async Task OnAfterRenderAsync(bool firstRender)
|
protected override async Task OnAfterRenderAsync(bool firstRender)
|
||||||
{
|
{
|
||||||
@ -38,6 +47,7 @@
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
_modelDefinition = (await ModelService.Load(Model.Id)) ?? _modelDefinition;
|
_modelDefinition = (await ModelService.Load(Model.Id)) ?? _modelDefinition;
|
||||||
|
_mlProcessor = MlProcessorFactory.Create();
|
||||||
|
|
||||||
#pragma warning disable CS4014
|
#pragma warning disable CS4014
|
||||||
Task.Run(PredictionLoop);
|
Task.Run(PredictionLoop);
|
||||||
@ -87,15 +97,20 @@
|
|||||||
await PredictAnomaly(startDate, endDate);
|
await PredictAnomaly(startDate, endDate);
|
||||||
startDate = endDate;
|
startDate = endDate;
|
||||||
}
|
}
|
||||||
catch(Exception)
|
catch(Exception e)
|
||||||
{
|
{
|
||||||
//ignore
|
Logger.LogError(e, e.Message);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private async Task PredictAnomaly(DateTime startDate, DateTime endDate)
|
private async Task PredictAnomaly(DateTime startDate, DateTime endDate)
|
||||||
{
|
{
|
||||||
|
if (Model == null || !Model.IsEnabled)
|
||||||
|
{
|
||||||
|
_prediction = new Prediction { PredictedLabel = "Idle" };
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
// use automatic step value to always request 500 elements
|
// use automatic step value to always request 500 elements
|
||||||
var seconds = (endDate - startDate).TotalSeconds / 500.0;
|
var seconds = (endDate - startDate).TotalSeconds / 500.0;
|
||||||
@ -150,8 +165,9 @@
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
var mlProcessor = new MLProcessor(MLProcessorLogger);
|
_prediction = await _mlProcessor!.Predict(Model, _modelDefinition, data);
|
||||||
_prediction = await mlProcessor.Predict(Model, _modelDefinition, data);
|
_updated = DateTime.Now;
|
||||||
|
await InvokeAsync(StateHasChanged);
|
||||||
}
|
}
|
||||||
|
|
||||||
private async Task ShowError(string text)
|
private async Task ShowError(string text)
|
||||||
|
|||||||
@ -14,12 +14,12 @@
|
|||||||
<h4>@Text</h4>
|
<h4>@Text</h4>
|
||||||
|
|
||||||
<MudTextField T="string" ReadOnly="true" Text="@_progressText"></MudTextField>
|
<MudTextField T="string" ReadOnly="true" Text="@_progressText"></MudTextField>
|
||||||
@if (_isTraining == false)
|
@if (_isTraining == false && _evaluationMetrics != null)
|
||||||
{
|
{
|
||||||
<MudText>MicroAccuracy: @_evaluationMetrics!.MicroAccuracy.ToString("N2")</MudText>
|
<MudText>MicroAccuracy: @_evaluationMetrics.MicroAccuracy.ToString("N6")</MudText>
|
||||||
<MudText>MacroAccuracy: @_evaluationMetrics!.MacroAccuracy.ToString("N2")</MudText>
|
<MudText>MacroAccuracy: @_evaluationMetrics.MacroAccuracy.ToString("N6")</MudText>
|
||||||
<MudText>LogLoss: @_evaluationMetrics!.LogLoss.ToString("N2")</MudText>
|
<MudText>LogLoss: @_evaluationMetrics.LogLoss.ToString("N6")</MudText>
|
||||||
<MudText>LogLossReduction: @_evaluationMetrics!.LogLossReduction.ToString("N2")</MudText>
|
<MudText>LogLossReduction: @_evaluationMetrics.LogLossReduction.ToString("N6")</MudText>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -47,10 +47,21 @@
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
try
|
||||||
|
{
|
||||||
|
|
||||||
_evaluationMetrics = await Processor.Train(Model, UpdateProgress);
|
_evaluationMetrics = await Processor.Train(Model, UpdateProgress);
|
||||||
|
}
|
||||||
|
catch (Exception e)
|
||||||
|
{
|
||||||
|
_progressText = "ERROR: " + e.Message;
|
||||||
|
}
|
||||||
|
finally
|
||||||
|
{
|
||||||
_isTraining = false;
|
_isTraining = false;
|
||||||
await InvokeAsync(StateHasChanged);
|
await InvokeAsync(StateHasChanged);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
private async void UpdateProgress(string message)
|
private async void UpdateProgress(string message)
|
||||||
{
|
{
|
||||||
|
|||||||
@ -29,4 +29,55 @@ public class DataSourceDefinition
|
|||||||
public string Description { get; set; } = string.Empty;
|
public string Description { get; set; } = string.Empty;
|
||||||
|
|
||||||
public override string ToString() => Name;
|
public override string ToString() => Name;
|
||||||
|
|
||||||
|
public List<string> GetColumnNames()
|
||||||
|
{
|
||||||
|
var measureNames = new[] { "min", "max", "avg", "mean" };
|
||||||
|
var columnNames = new List<string>();
|
||||||
|
foreach (var item in Queries)
|
||||||
|
{
|
||||||
|
columnNames.AddRange(measureNames.Select(x => $"{item.Query}_{x}"));
|
||||||
|
}
|
||||||
|
return columnNames;
|
||||||
|
}
|
||||||
|
|
||||||
|
public static string ConvertToCsv(List<TimeSeriesDataSet> source)
|
||||||
|
{
|
||||||
|
var data = "";
|
||||||
|
for (var i = 0; i < source.Count; i++)
|
||||||
|
{
|
||||||
|
|
||||||
|
var queryData = source[i];
|
||||||
|
var min = queryData.Data.Min(x => x.Value);
|
||||||
|
var max = queryData.Data.Max(x => x.Value);
|
||||||
|
var avg = queryData.Data.Average(x => x.Value);
|
||||||
|
var mean = queryData.Data.Sum(x => x.Value) / queryData.Data.Count;
|
||||||
|
|
||||||
|
data += min + "," + max + "," + avg + "," + mean + ",";
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
return data.TrimEnd(',');
|
||||||
|
}
|
||||||
|
|
||||||
|
public static float[] ToFeatures(List<TimeSeriesDataSet> source)
|
||||||
|
{
|
||||||
|
var data = new float[source.Count * 4];
|
||||||
|
for (var i = 0; i < source.Count; i++)
|
||||||
|
{
|
||||||
|
|
||||||
|
var queryData = source[i];
|
||||||
|
var min = queryData.Data.Min(x => x.Value);
|
||||||
|
var max = queryData.Data.Max(x => x.Value);
|
||||||
|
var avg = queryData.Data.Average(x => x.Value);
|
||||||
|
var mean = queryData.Data.Sum(x => x.Value) / queryData.Data.Count;
|
||||||
|
|
||||||
|
data[i*4 + 0] = min;
|
||||||
|
data[i*4 + 1] = max;
|
||||||
|
data[i*4 + 2] = avg;
|
||||||
|
data[i*4 + 3] = mean;
|
||||||
|
}
|
||||||
|
|
||||||
|
return data;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
namespace DeepTrace.Data
|
namespace DeepTrace.Data;
|
||||||
{
|
|
||||||
public class IntervalDefinition
|
public class IntervalDefinition
|
||||||
{
|
{
|
||||||
public IntervalDefinition() { }
|
public IntervalDefinition() { }
|
||||||
@ -19,4 +19,3 @@
|
|||||||
public List<TimeSeriesDataSet> Data { get; set; } = new();
|
public List<TimeSeriesDataSet> Data { get; set; } = new();
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -5,8 +5,10 @@ using System;
|
|||||||
using System.Linq;
|
using System.Linq;
|
||||||
using System.IO;
|
using System.IO;
|
||||||
using System.Collections.Generic;
|
using System.Collections.Generic;
|
||||||
namespace DeepTrace
|
namespace DeepTrace;
|
||||||
{
|
|
||||||
|
#pragma warning disable CS8618 // Non-nullable field must contain a non-null value when exiting constructor. Consider declaring as nullable.
|
||||||
|
|
||||||
public partial class MLModel1
|
public partial class MLModel1
|
||||||
{
|
{
|
||||||
/// <summary>
|
/// <summary>
|
||||||
@ -164,6 +166,8 @@ namespace DeepTrace
|
|||||||
|
|
||||||
#endregion
|
#endregion
|
||||||
|
|
||||||
|
#pragma warning restore CS8618 // Non-nullable field must contain a non-null value when exiting constructor. Consider declaring as nullable.
|
||||||
|
|
||||||
private static string MLNetModelPath = Path.GetFullPath("MLModel1.zip");
|
private static string MLNetModelPath = Path.GetFullPath("MLModel1.zip");
|
||||||
|
|
||||||
public static readonly Lazy<PredictionEngine<ModelInput, ModelOutput>> PredictEngine = new Lazy<PredictionEngine<ModelInput, ModelOutput>>(() => CreatePredictEngine(), true);
|
public static readonly Lazy<PredictionEngine<ModelInput, ModelOutput>> PredictEngine = new Lazy<PredictionEngine<ModelInput, ModelOutput>>(() => CreatePredictEngine(), true);
|
||||||
@ -186,4 +190,3 @@ namespace DeepTrace
|
|||||||
return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);
|
return mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -9,8 +9,8 @@ using Microsoft.ML.Trainers.FastTree;
|
|||||||
using Microsoft.ML.Trainers;
|
using Microsoft.ML.Trainers;
|
||||||
using Microsoft.ML;
|
using Microsoft.ML;
|
||||||
|
|
||||||
namespace DeepTrace
|
namespace DeepTrace;
|
||||||
{
|
|
||||||
public partial class MLModel1
|
public partial class MLModel1
|
||||||
{
|
{
|
||||||
/// <summary>
|
/// <summary>
|
||||||
@ -61,4 +61,3 @@ namespace DeepTrace
|
|||||||
return pipeline;
|
return pipeline;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -2,6 +2,7 @@
|
|||||||
using MongoDB.Bson.Serialization.Attributes;
|
using MongoDB.Bson.Serialization.Attributes;
|
||||||
using MongoDB.Bson;
|
using MongoDB.Bson;
|
||||||
using System.Text;
|
using System.Text;
|
||||||
|
using DeepTrace.ML;
|
||||||
|
|
||||||
namespace DeepTrace.Data;
|
namespace DeepTrace.Data;
|
||||||
|
|
||||||
@ -21,17 +22,10 @@ public class ModelDefinition
|
|||||||
public string AIparameters { get; set; } = string.Empty;
|
public string AIparameters { get; set; } = string.Empty;
|
||||||
public List<IntervalDefinition> IntervalDefinitionList { get; set; } = new();
|
public List<IntervalDefinition> IntervalDefinitionList { get; set; } = new();
|
||||||
|
|
||||||
public List<string> GetColumnNames()
|
public List<string> GetColumnNames() => DataSource.GetColumnNames()
|
||||||
{
|
.Concat(new[] { "Name" })
|
||||||
var measureNames = new[] { "min", "max", "avg", "mean" };
|
.ToList()
|
||||||
var columnNames = new List<string>();
|
;
|
||||||
foreach (var item in DataSource.Queries)
|
|
||||||
{
|
|
||||||
columnNames.AddRange(measureNames.Select(x => $"{item.Query}_{x}"));
|
|
||||||
}
|
|
||||||
columnNames.Add("Name");
|
|
||||||
return columnNames;
|
|
||||||
}
|
|
||||||
|
|
||||||
public string ToCsv()
|
public string ToCsv()
|
||||||
{
|
{
|
||||||
@ -45,30 +39,24 @@ public class ModelDefinition
|
|||||||
foreach (var currentInterval in IntervalDefinitionList)
|
foreach (var currentInterval in IntervalDefinitionList)
|
||||||
{
|
{
|
||||||
var source = currentInterval.Data;
|
var source = currentInterval.Data;
|
||||||
string data = ConvertToCsv(source);
|
string data = DataSourceDefinition.ConvertToCsv(source);
|
||||||
data += "," + currentInterval.Name;
|
data += $",\"{currentInterval.Name}\"";
|
||||||
writer.AppendLine(data);
|
writer.AppendLine(data);
|
||||||
}
|
}
|
||||||
|
|
||||||
return writer.ToString();
|
return writer.ToString();
|
||||||
}
|
}
|
||||||
|
|
||||||
public static string ConvertToCsv(List<TimeSeriesDataSet> source)
|
public IEnumerable<MLInputData> ToInput()
|
||||||
{
|
{
|
||||||
var data = "";
|
foreach (var currentInterval in IntervalDefinitionList)
|
||||||
for (var i = 0; i < source.Count; i++)
|
|
||||||
{
|
{
|
||||||
|
var source = currentInterval.Data;
|
||||||
var queryData = source[i];
|
yield return new MLInputData
|
||||||
var min = queryData.Data.Min(x => x.Value);
|
{
|
||||||
var max = queryData.Data.Max(x => x.Value);
|
Features = DataSourceDefinition.ToFeatures(source),
|
||||||
var avg = queryData.Data.Average(x => x.Value);
|
Label = currentInterval.Name
|
||||||
var mean = queryData.Data.Sum(x => x.Value) / queryData.Data.Count;
|
};
|
||||||
|
}
|
||||||
data += min + "," + max + "," + avg + "," + mean + ",";
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
return data+"\"ignoreMe\"";
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -4,9 +4,9 @@ namespace DeepTrace.Data;
|
|||||||
|
|
||||||
public class Prediction
|
public class Prediction
|
||||||
{
|
{
|
||||||
[ColumnName(@"PredictedLabel")]
|
[ColumnName("PredictedLabel")]
|
||||||
public string PredictedLabel { get; set; }
|
public string PredictedLabel { get; set; } = string.Empty;
|
||||||
|
|
||||||
[ColumnName(@"Score")]
|
[ColumnName("Score")]
|
||||||
public float[] Score { get; set; }
|
public float[] Score { get; set; } = Array.Empty<float>();
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,14 +1,14 @@
|
|||||||
using MongoDB.Bson.Serialization.Attributes;
|
using MongoDB.Bson.Serialization.Attributes;
|
||||||
using MongoDB.Bson;
|
using MongoDB.Bson;
|
||||||
|
|
||||||
namespace DeepTrace.Data
|
namespace DeepTrace.Data;
|
||||||
{
|
|
||||||
public class TrainedModelDefinition
|
public class TrainedModelDefinition
|
||||||
{
|
{
|
||||||
[BsonId]
|
[BsonId]
|
||||||
public ObjectId? Id { get; set; }
|
public ObjectId? Id { get; set; }
|
||||||
public bool IsEnabled { get; set; } = false;
|
public bool IsEnabled { get; set; } = false;
|
||||||
public string Name { get; set; } = string.Empty;
|
public string Name { get; set; } = string.Empty;
|
||||||
|
public DataSourceDefinition? DataSource{ get; set;}
|
||||||
public byte[] Value { get; set; } = Array.Empty<byte>(); //base64
|
public byte[] Value { get; set; } = Array.Empty<byte>(); //base64
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -1,47 +1,31 @@
|
|||||||
using DeepTrace.Data;
|
using DeepTrace.Data;
|
||||||
using Microsoft.ML;
|
using Microsoft.ML;
|
||||||
|
using Microsoft.ML.Data;
|
||||||
using Microsoft.ML.Trainers;
|
using Microsoft.ML.Trainers;
|
||||||
|
|
||||||
|
|
||||||
namespace DeepTrace.ML
|
namespace DeepTrace.ML;
|
||||||
{
|
|
||||||
public class EstimatorBuilder : IEstimatorBuilder
|
public class EstimatorBuilder : IEstimatorBuilder
|
||||||
{
|
{
|
||||||
public IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model)
|
public IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model)
|
||||||
{
|
{
|
||||||
IEstimator<ITransformer>? pipeline = null;
|
return
|
||||||
var ds = model.DataSource;
|
mlContext.Transforms.NormalizeMinMax(inputColumnName: nameof(MLInputData.Features),outputColumnName: "Features")
|
||||||
|
.Append(mlContext.Transforms.Conversion.MapValueToKey(inputColumnName: nameof(MLInputData.Label), outputColumnName: "Label"))
|
||||||
var measureNames = new[] { "min", "max", "avg", "mean" };
|
// .AppendCacheCheckpoint(mlContext)
|
||||||
var columnNames = new List<string>();
|
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(
|
||||||
foreach (var item in ds.Queries)
|
binaryEstimator: mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(
|
||||||
|
new LbfgsLogisticRegressionBinaryTrainer.Options
|
||||||
{
|
{
|
||||||
var estimators = measureNames.Select(x => mlContext.Transforms.Text.FeaturizeText(inputColumnName: $"{item.Query}_{x}", outputColumnName: $"{item.Query}_{x}"));
|
L1Regularization = 1F,
|
||||||
columnNames.AddRange(measureNames.Select(x => $"{item.Query}_{x}"));
|
L2Regularization = 1F,
|
||||||
|
LabelColumnName = "Label",
|
||||||
foreach (var e in estimators)
|
FeatureColumnName = "Features"
|
||||||
{
|
|
||||||
if (pipeline == null)
|
|
||||||
{
|
|
||||||
pipeline = e;
|
|
||||||
}
|
}
|
||||||
else
|
))
|
||||||
{
|
)
|
||||||
pipeline = pipeline.Append(e);
|
.Append(mlContext.Transforms.Conversion.MapKeyToValue(nameof(MLOutputData.PredictedLabel), inputColumnName: "PredictedLabel"));
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
pipeline = pipeline!
|
|
||||||
.Append(mlContext.Transforms.Concatenate(@"Features", columnNames.ToArray()))
|
|
||||||
.Append(mlContext.Transforms.Conversion.MapValueToKey(outputColumnName: @"Name", inputColumnName: @"Name"))
|
|
||||||
.Append(mlContext.Transforms.NormalizeMinMax(@"Features", @"Features"))
|
|
||||||
.Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryEstimator: mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(new LbfgsLogisticRegressionBinaryTrainer.Options() { L1Regularization = 1F, L2Regularization = 1F, LabelColumnName = @"Name", FeatureColumnName = @"Features" }), labelColumnName: @"Name"))
|
|
||||||
.Append(mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: @"PredictedLabel", inputColumnName: @"PredictedLabel"));
|
|
||||||
|
|
||||||
return pipeline;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -1,10 +1,9 @@
|
|||||||
using DeepTrace.Data;
|
using DeepTrace.Data;
|
||||||
using Microsoft.ML;
|
using Microsoft.ML;
|
||||||
|
|
||||||
namespace DeepTrace.ML
|
namespace DeepTrace.ML;
|
||||||
{
|
|
||||||
public interface IEstimatorBuilder
|
public interface IEstimatorBuilder
|
||||||
{
|
{
|
||||||
IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model);
|
IEstimator<ITransformer> BuildPipeline(MLContext mlContext, ModelDefinition model);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
@ -10,3 +10,8 @@ public interface IMLProcessor
|
|||||||
void Import(byte[] data);
|
void Import(byte[] data);
|
||||||
Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data);
|
Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public interface IMLProcessorFactory
|
||||||
|
{
|
||||||
|
IMLProcessor Create();
|
||||||
|
}
|
||||||
|
|||||||
@ -1,11 +1,10 @@
|
|||||||
using PrometheusAPI;
|
using PrometheusAPI;
|
||||||
|
|
||||||
namespace DeepTrace.ML
|
namespace DeepTrace.ML;
|
||||||
{
|
|
||||||
public interface IMeasure
|
public interface IMeasure
|
||||||
{
|
{
|
||||||
public string Name { get; }
|
public string Name { get; }
|
||||||
void Reset();
|
void Reset();
|
||||||
float Calculate(IEnumerable<TimeSeries> data);
|
float Calculate(IEnumerable<TimeSeries> data);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
namespace DeepTrace.ML
|
namespace DeepTrace.ML;
|
||||||
{
|
|
||||||
public class MLEvaluationMetrics
|
public class MLEvaluationMetrics
|
||||||
{
|
{
|
||||||
public MLEvaluationMetrics()
|
public MLEvaluationMetrics()
|
||||||
@ -13,4 +13,3 @@
|
|||||||
public double LogLossReduction { get; set; }
|
public double LogLossReduction { get; set; }
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -7,6 +7,21 @@ namespace DeepTrace.ML;
|
|||||||
|
|
||||||
public record ModelRecord(MLContext Context, DataViewSchema Schema, ITransformer Transformer);
|
public record ModelRecord(MLContext Context, DataViewSchema Schema, ITransformer Transformer);
|
||||||
|
|
||||||
|
public class MLInputData
|
||||||
|
{
|
||||||
|
public string Label { get; set; } = "Normal operation";
|
||||||
|
public float[] Features { get; set; } = Array.Empty<float>();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
public class MLOutputData
|
||||||
|
{
|
||||||
|
public string PredictedLabel { get; set; } = string.Empty;
|
||||||
|
|
||||||
|
public float[] Score { get; set; } = Array.Empty<float>();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
public static class MLHelpers
|
public static class MLHelpers
|
||||||
{
|
{
|
||||||
public static byte[] ExportSingleModel( ModelRecord model)
|
public static byte[] ExportSingleModel( ModelRecord model)
|
||||||
@ -32,10 +47,22 @@ public static class MLHelpers
|
|||||||
|
|
||||||
await File.WriteAllTextAsync(fileName, csv);
|
await File.WriteAllTextAsync(fileName, csv);
|
||||||
|
|
||||||
return LoadFromCsv(mlContext, model, fileName);
|
return (LoadFromCsv(mlContext, model, fileName), fileName);
|
||||||
}
|
}
|
||||||
|
|
||||||
public static (IDataView View, string FileName) LoadFromCsv(MLContext mlContext, ModelDefinition model, string fileName)
|
public static Task<IDataView> ToInput(MLContext mlContext, ModelDefinition model)
|
||||||
|
{
|
||||||
|
var input = model.ToInput().ToList();
|
||||||
|
|
||||||
|
// VectorType attribute with dynamic dimension
|
||||||
|
// https://github.com/dotnet/machinelearning/issues/164
|
||||||
|
var schemaDef = SchemaDefinition.Create(typeof(MLInputData));
|
||||||
|
schemaDef["Features"].ColumnType = new VectorDataViewType(NumberDataViewType.Single, input.First().Features.Length );
|
||||||
|
|
||||||
|
return Task.FromResult(mlContext.Data.LoadFromEnumerable(input, schemaDef));
|
||||||
|
}
|
||||||
|
|
||||||
|
public static IDataView LoadFromCsv(MLContext mlContext, ModelDefinition model, string fileName)
|
||||||
{
|
{
|
||||||
var columnNames = model.GetColumnNames();
|
var columnNames = model.GetColumnNames();
|
||||||
var columns = columnNames
|
var columns = columnNames
|
||||||
@ -43,8 +70,14 @@ public static class MLHelpers
|
|||||||
.ToArray()
|
.ToArray()
|
||||||
;
|
;
|
||||||
|
|
||||||
var view = mlContext.Data.LoadFromTextFile(fileName, columns, separatorChar: ',', hasHeader: true, allowQuoting: true, trimWhitespace: true);
|
var view = mlContext.Data.LoadFromTextFile(
|
||||||
|
fileName,
|
||||||
|
columns,
|
||||||
|
separatorChar: ',',
|
||||||
|
hasHeader: true,
|
||||||
|
allowQuoting: true,
|
||||||
|
trimWhitespace: true);
|
||||||
|
|
||||||
return (view, fileName);
|
return view;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,32 +1,51 @@
|
|||||||
using DeepTrace.Data;
|
using DeepTrace.Data;
|
||||||
using Microsoft.ML;
|
using Microsoft.ML;
|
||||||
using Microsoft.ML.Data;
|
|
||||||
using PrometheusAPI;
|
|
||||||
using System.Data;
|
using System.Data;
|
||||||
using static DeepTrace.MLModel1;
|
|
||||||
|
|
||||||
namespace DeepTrace.ML
|
namespace DeepTrace.ML;
|
||||||
|
|
||||||
|
internal class MLProcessorFactory : IMLProcessorFactory
|
||||||
{
|
{
|
||||||
|
private readonly ILogger<MLProcessor> _logger;
|
||||||
|
private IEstimatorBuilder _estimatorBuilder;
|
||||||
|
|
||||||
|
public MLProcessorFactory(ILogger<MLProcessor> logger, IEstimatorBuilder estimatorBuilder)
|
||||||
|
{
|
||||||
|
_logger = logger;
|
||||||
|
_estimatorBuilder = estimatorBuilder;
|
||||||
|
}
|
||||||
|
|
||||||
|
public IMLProcessor Create() => new MLProcessor(_logger, _estimatorBuilder);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// <summary>
|
||||||
|
/// Wrapper for ML.NET operations.
|
||||||
|
/// </summary>
|
||||||
public class MLProcessor : IMLProcessor
|
public class MLProcessor : IMLProcessor
|
||||||
{
|
{
|
||||||
|
private readonly ILogger<MLProcessor> _logger;
|
||||||
private MLContext _mlContext = new MLContext();
|
private MLContext _mlContext = new MLContext();
|
||||||
private EstimatorBuilder _estimatorBuilder = new EstimatorBuilder();
|
private IEstimatorBuilder _estimatorBuilder;
|
||||||
private DataViewSchema? _schema;
|
private DataViewSchema? _schema;
|
||||||
private ITransformer? _transformer;
|
private ITransformer? _transformer;
|
||||||
private static string _signature = "DeepTrace-Model-v1-" + typeof(MLProcessor).Name;
|
private static string _signature = "DeepTrace-Model-v1-" + typeof(MLProcessor).Name;
|
||||||
private readonly ILogger<MLProcessor> _logger;
|
private PredictionEngine<MLInputData, MLOutputData>? _predictionEngine;
|
||||||
|
|
||||||
public MLProcessor(ILogger<MLProcessor> logger)
|
public MLProcessor(ILogger<MLProcessor> logger, IEstimatorBuilder estimatorBuilder)
|
||||||
{
|
{
|
||||||
_logger = logger;
|
_logger = logger;
|
||||||
|
_estimatorBuilder = estimatorBuilder;
|
||||||
}
|
}
|
||||||
|
|
||||||
private string Name { get; set; } = "TestModel";
|
private string Name { get; set; } = "TestModel";
|
||||||
|
|
||||||
public async Task<MLEvaluationMetrics> Train(ModelDefinition modelDef, Action<string> log)
|
public async Task<MLEvaluationMetrics> Train(ModelDefinition modelDef, Action<string> log)
|
||||||
{
|
{
|
||||||
|
_logger.LogInformation("Training started");
|
||||||
|
|
||||||
|
Name = modelDef.Name;
|
||||||
var pipeline = _estimatorBuilder.BuildPipeline(_mlContext, modelDef);
|
var pipeline = _estimatorBuilder.BuildPipeline(_mlContext, modelDef);
|
||||||
var (data, filename) = await MLHelpers.Convert(_mlContext, modelDef);
|
var data = await MLHelpers.ToInput(_mlContext, modelDef);
|
||||||
|
|
||||||
DataOperationsCatalog.TrainTestData dataSplit = _mlContext.Data.TrainTestSplit(data, testFraction: 0.2);
|
DataOperationsCatalog.TrainTestData dataSplit = _mlContext.Data.TrainTestSplit(data, testFraction: 0.2);
|
||||||
|
|
||||||
@ -35,13 +54,13 @@ namespace DeepTrace.ML
|
|||||||
{
|
{
|
||||||
_schema = data.Schema;
|
_schema = data.Schema;
|
||||||
_transformer = pipeline.Fit(dataSplit.TrainSet);
|
_transformer = pipeline.Fit(dataSplit.TrainSet);
|
||||||
|
|
||||||
return Evaluate(dataSplit.TestSet);
|
return Evaluate(dataSplit.TestSet);
|
||||||
}
|
}
|
||||||
finally
|
finally
|
||||||
{
|
{
|
||||||
File.Delete(filename);
|
_logger.LogInformation("Training finished");
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
private void LogEvents(Action<string> log, LoggingEventArgs e)
|
private void LogEvents(Action<string> log, LoggingEventArgs e)
|
||||||
@ -56,8 +75,10 @@ namespace DeepTrace.ML
|
|||||||
|
|
||||||
private MLEvaluationMetrics Evaluate(IDataView testData)
|
private MLEvaluationMetrics Evaluate(IDataView testData)
|
||||||
{
|
{
|
||||||
|
// https://learn.microsoft.com/en-us/dotnet/api/microsoft.ml.standardtrainerscatalog.lbfgslogisticregression?view=ml-dotnet
|
||||||
|
|
||||||
var predictions = _transformer!.Transform(testData);
|
var predictions = _transformer!.Transform(testData);
|
||||||
var metrics = _mlContext.MulticlassClassification.Evaluate(predictions, "Name");
|
var metrics = _mlContext.MulticlassClassification.Evaluate(predictions, nameof(MLInputData.Label));
|
||||||
var evaluationMetrics = new MLEvaluationMetrics()
|
var evaluationMetrics = new MLEvaluationMetrics()
|
||||||
{
|
{
|
||||||
MicroAccuracy = metrics.MicroAccuracy,
|
MicroAccuracy = metrics.MicroAccuracy,
|
||||||
@ -110,28 +131,25 @@ namespace DeepTrace.ML
|
|||||||
(_mlContext, _schema, _transformer) = MLHelpers.ImportSingleModel(bytes);
|
(_mlContext, _schema, _transformer) = MLHelpers.ImportSingleModel(bytes);
|
||||||
}
|
}
|
||||||
|
|
||||||
public async Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data)
|
public Task<Prediction> Predict(TrainedModelDefinition trainedModel, ModelDefinition model, List<TimeSeriesDataSet> data)
|
||||||
{
|
{
|
||||||
|
Name = trainedModel.Name;
|
||||||
|
|
||||||
|
if (_transformer == null )
|
||||||
Import(trainedModel.Value);
|
Import(trainedModel.Value);
|
||||||
var headers = string.Join(",", model.GetColumnNames().Select(x => $"\"{x}\""));
|
|
||||||
var row = ModelDefinition.ConvertToCsv(data);
|
|
||||||
|
|
||||||
var csv = headers+"\n"+row;
|
if (_predictionEngine == null)
|
||||||
var fileName = Path.GetTempFileName();
|
|
||||||
try
|
|
||||||
{
|
{
|
||||||
await File.WriteAllTextAsync(fileName, csv);
|
_predictionEngine = _mlContext.Model.CreatePredictionEngine<MLInputData, MLOutputData>(_transformer, _schema);
|
||||||
|
|
||||||
var (dataView, _) = MLHelpers.LoadFromCsv(_mlContext, model, fileName);
|
|
||||||
|
|
||||||
var predictionEngine = _mlContext.Model.CreatePredictionEngine<IDataView, Prediction>(_transformer);
|
|
||||||
var prediction = predictionEngine.Predict(dataView);
|
|
||||||
return prediction;
|
|
||||||
}
|
}
|
||||||
finally
|
|
||||||
|
var input = new MLInputData
|
||||||
{
|
{
|
||||||
File.Delete(fileName);
|
Features = DataSourceDefinition.ToFeatures(data)
|
||||||
}
|
};
|
||||||
}
|
|
||||||
|
var prediction = _predictionEngine.Predict( input );
|
||||||
|
|
||||||
|
return Task.FromResult( new Prediction { PredictedLabel = prediction.PredictedLabel, Score = prediction.Score } );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,7 +1,7 @@
|
|||||||
using PrometheusAPI;
|
using PrometheusAPI;
|
||||||
|
|
||||||
namespace DeepTrace.ML
|
namespace DeepTrace.ML;
|
||||||
{
|
|
||||||
public class MeasureMin : IMeasure
|
public class MeasureMin : IMeasure
|
||||||
{
|
{
|
||||||
public string Name => "Min";
|
public string Name => "Min";
|
||||||
@ -85,5 +85,3 @@ namespace DeepTrace.ML
|
|||||||
/// </summary>
|
/// </summary>
|
||||||
public class MeasureDiffSum : MeasureDiff<MeasureSum> { }
|
public class MeasureDiffSum : MeasureDiff<MeasureSum> { }
|
||||||
public class MeasureDiffMedian : MeasureDiff<MeasureMedian> { }
|
public class MeasureDiffMedian : MeasureDiff<MeasureMedian> { }
|
||||||
|
|
||||||
}
|
|
||||||
|
|||||||
@ -58,8 +58,8 @@
|
|||||||
int pos = i;
|
int pos = i;
|
||||||
|
|
||||||
<MudItem xs="10">
|
<MudItem xs="10">
|
||||||
@*<MudTextField Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Variant="Variant.Text" InputType="InputType.Search" Lines="2" />*@
|
<MudTextField Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Variant="Variant.Text" InputType="InputType.Search" Lines="2" />
|
||||||
<MudAutocomplete Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Lines="1" Variant="Variant.Text" SearchFunc="@SearchForQuery"></MudAutocomplete>
|
@*<MudAutocomplete Label="Query" @bind-Value="_queryForm.Source.Queries[pos].Query" Lines="1" Variant="Variant.Text" SearchFunc="@SearchForQuery"></MudAutocomplete>*@
|
||||||
</MudItem>
|
</MudItem>
|
||||||
<MudItem xs="1">
|
<MudItem xs="1">
|
||||||
<MudIconButton Icon="@Icons.Material.Outlined.Add" Variant="Variant.Outlined" aria-label="add" OnClick="@(() => AddQuery(pos))" />
|
<MudIconButton Icon="@Icons.Material.Outlined.Add" Variant="Variant.Outlined" aria-label="add" OnClick="@(() => AddQuery(pos))" />
|
||||||
|
|||||||
@ -2,8 +2,8 @@
|
|||||||
using Microsoft.AspNetCore.Mvc.RazorPages;
|
using Microsoft.AspNetCore.Mvc.RazorPages;
|
||||||
using System.Diagnostics;
|
using System.Diagnostics;
|
||||||
|
|
||||||
namespace DeepTrace.Pages
|
namespace DeepTrace.Pages;
|
||||||
{
|
|
||||||
[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
|
[ResponseCache(Duration = 0, Location = ResponseCacheLocation.None, NoStore = true)]
|
||||||
[IgnoreAntiforgeryToken]
|
[IgnoreAntiforgeryToken]
|
||||||
public class ErrorModel : PageModel
|
public class ErrorModel : PageModel
|
||||||
@ -24,4 +24,3 @@ namespace DeepTrace.Pages
|
|||||||
RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;
|
RequestId = Activity.Current?.Id ?? HttpContext.TraceIdentifier;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
@ -18,7 +18,7 @@
|
|||||||
@inject IEstimatorBuilder EstimatorBuilder
|
@inject IEstimatorBuilder EstimatorBuilder
|
||||||
@inject NavigationManager NavManager
|
@inject NavigationManager NavManager
|
||||||
@inject IJSRuntime Js
|
@inject IJSRuntime Js
|
||||||
@inject ILogger<MLProcessor> MLProcessorLogger
|
@inject IMLProcessorFactory MlProcessorFactory
|
||||||
|
|
||||||
|
|
||||||
<PageTitle>Training</PageTitle>
|
<PageTitle>Training</PageTitle>
|
||||||
@ -531,14 +531,14 @@
|
|||||||
|
|
||||||
private async Task HandleTrain()
|
private async Task HandleTrain()
|
||||||
{
|
{
|
||||||
var mlProcessor = new MLProcessor(MLProcessorLogger);
|
|
||||||
MLProcessorLogger.LogInformation("Training started");
|
|
||||||
|
|
||||||
var options = new DialogOptions
|
var options = new DialogOptions
|
||||||
{
|
{
|
||||||
CloseOnEscapeKey = true
|
CloseOnEscapeKey = true
|
||||||
};
|
};
|
||||||
var parameters = new DialogParameters();
|
var parameters = new DialogParameters();
|
||||||
|
|
||||||
|
var mlProcessor = MlProcessorFactory.Create();
|
||||||
|
|
||||||
parameters.Add(nameof(Controls.TrainingDialog.Text), _modelForm!.CurrentModel.Name);
|
parameters.Add(nameof(Controls.TrainingDialog.Text), _modelForm!.CurrentModel.Name);
|
||||||
parameters.Add(nameof(Controls.TrainingDialog.Processor), mlProcessor);
|
parameters.Add(nameof(Controls.TrainingDialog.Processor), mlProcessor);
|
||||||
parameters.Add(nameof(Controls.TrainingDialog.Model), _modelForm.CurrentModel);
|
parameters.Add(nameof(Controls.TrainingDialog.Model), _modelForm.CurrentModel);
|
||||||
@ -546,7 +546,6 @@
|
|||||||
var d = DialogService.Show<Controls.TrainingDialog>("Training", parameters, options);
|
var d = DialogService.Show<Controls.TrainingDialog>("Training", parameters, options);
|
||||||
var res = await d.Result;
|
var res = await d.Result;
|
||||||
|
|
||||||
MLProcessorLogger.LogInformation("Training finished");
|
|
||||||
var bytes = mlProcessor.Export();
|
var bytes = mlProcessor.Export();
|
||||||
|
|
||||||
//save to Mongo
|
//save to Mongo
|
||||||
|
|||||||
@ -29,6 +29,7 @@ builder.Services
|
|||||||
.AddSingleton<IModelStorageService, ModelStorageService>()
|
.AddSingleton<IModelStorageService, ModelStorageService>()
|
||||||
.AddSingleton<ITrainedModelStorageService, TrainedModelStorageService>()
|
.AddSingleton<ITrainedModelStorageService, TrainedModelStorageService>()
|
||||||
.AddSingleton<IEstimatorBuilder, EstimatorBuilder>()
|
.AddSingleton<IEstimatorBuilder, EstimatorBuilder>()
|
||||||
|
.AddSingleton<IMLProcessorFactory, MLProcessorFactory>()
|
||||||
;
|
;
|
||||||
|
|
||||||
var app = builder.Build();
|
var app = builder.Build();
|
||||||
|
|||||||
@ -1,8 +1,8 @@
|
|||||||
using MongoDB.Bson;
|
using MongoDB.Bson;
|
||||||
using MongoDB.Driver;
|
using MongoDB.Driver;
|
||||||
|
|
||||||
namespace DeepTrace.Services
|
namespace DeepTrace.Services;
|
||||||
{
|
|
||||||
public class DataSourceStorageService : IDataSourceStorageService
|
public class DataSourceStorageService : IDataSourceStorageService
|
||||||
{
|
{
|
||||||
|
|
||||||
@ -55,4 +55,3 @@ namespace DeepTrace.Services
|
|||||||
await collection.DeleteOneAsync($"_id = {source.Id}");
|
await collection.DeleteOneAsync($"_id = {source.Id}");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -2,8 +2,8 @@
|
|||||||
using MongoDB.Bson.Serialization.Attributes;
|
using MongoDB.Bson.Serialization.Attributes;
|
||||||
using MongoDB.Bson;
|
using MongoDB.Bson;
|
||||||
|
|
||||||
namespace DeepTrace.Services
|
namespace DeepTrace.Services;
|
||||||
{
|
|
||||||
public class DataSourceStorage : DataSourceDefinition, IEquatable<DataSourceStorage>
|
public class DataSourceStorage : DataSourceDefinition, IEquatable<DataSourceStorage>
|
||||||
{
|
{
|
||||||
[BsonId]
|
[BsonId]
|
||||||
@ -35,4 +35,3 @@ namespace DeepTrace.Services
|
|||||||
Task<List<DataSourceStorage>> Load();
|
Task<List<DataSourceStorage>> Load();
|
||||||
Task Store(DataSourceStorage source);
|
Task Store(DataSourceStorage source);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
@ -3,8 +3,8 @@ using MongoDB.Bson;
|
|||||||
using DeepTrace.Data;
|
using DeepTrace.Data;
|
||||||
using System.Text;
|
using System.Text;
|
||||||
|
|
||||||
namespace DeepTrace.Services
|
namespace DeepTrace.Services;
|
||||||
{
|
|
||||||
|
|
||||||
public interface IModelStorageService
|
public interface IModelStorageService
|
||||||
{
|
{
|
||||||
@ -13,4 +13,3 @@ namespace DeepTrace.Services
|
|||||||
Task<ModelDefinition?> Load(BsonObjectId id);
|
Task<ModelDefinition?> Load(BsonObjectId id);
|
||||||
Task Store(ModelDefinition source);
|
Task Store(ModelDefinition source);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -1,11 +1,10 @@
|
|||||||
using DeepTrace.Data;
|
using DeepTrace.Data;
|
||||||
|
|
||||||
namespace DeepTrace.Services
|
namespace DeepTrace.Services;
|
||||||
{
|
|
||||||
public interface ITrainedModelStorageService
|
public interface ITrainedModelStorageService
|
||||||
{
|
{
|
||||||
Task Delete(TrainedModelDefinition source, bool ignoreNotStored = false);
|
Task Delete(TrainedModelDefinition source, bool ignoreNotStored = false);
|
||||||
Task<List<TrainedModelDefinition>> Load();
|
Task<List<TrainedModelDefinition>> Load();
|
||||||
Task Store(TrainedModelDefinition source);
|
Task Store(TrainedModelDefinition source);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -2,8 +2,8 @@
|
|||||||
using MongoDB.Bson;
|
using MongoDB.Bson;
|
||||||
using MongoDB.Driver;
|
using MongoDB.Driver;
|
||||||
|
|
||||||
namespace DeepTrace.Services
|
namespace DeepTrace.Services;
|
||||||
{
|
|
||||||
public class ModelStorageService : IModelStorageService
|
public class ModelStorageService : IModelStorageService
|
||||||
{
|
{
|
||||||
|
|
||||||
@ -30,8 +30,9 @@ namespace DeepTrace.Services
|
|||||||
{
|
{
|
||||||
var db = _client.GetDatabase(MongoDBDatabaseName);
|
var db = _client.GetDatabase(MongoDBDatabaseName);
|
||||||
var collection = db.GetCollection<ModelDefinition>(MongoDBCollection);
|
var collection = db.GetCollection<ModelDefinition>(MongoDBCollection);
|
||||||
var res = (await (await collection.FindAsync($"{{_id:ObjectId(\"{id}\")}}")).ToListAsync()).FirstOrDefault();
|
|
||||||
return res;
|
var res = await (await collection.FindAsync($"{{ _id : ObjectId(\"{id}\") }}")).ToListAsync();
|
||||||
|
return res.FirstOrDefault();
|
||||||
}
|
}
|
||||||
|
|
||||||
public async Task Store(ModelDefinition source)
|
public async Task Store(ModelDefinition source)
|
||||||
@ -65,4 +66,3 @@ namespace DeepTrace.Services
|
|||||||
await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id));
|
await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -2,8 +2,8 @@
|
|||||||
using MongoDB.Bson;
|
using MongoDB.Bson;
|
||||||
using MongoDB.Driver;
|
using MongoDB.Driver;
|
||||||
|
|
||||||
namespace DeepTrace.Services
|
namespace DeepTrace.Services;
|
||||||
{
|
|
||||||
public class TrainedModelStorageService: ITrainedModelStorageService
|
public class TrainedModelStorageService: ITrainedModelStorageService
|
||||||
{
|
{
|
||||||
private const string MongoDBDatabaseName = "DeepTrace";
|
private const string MongoDBDatabaseName = "DeepTrace";
|
||||||
@ -55,4 +55,3 @@ namespace DeepTrace.Services
|
|||||||
await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id));
|
await collection.DeleteOneAsync(filter: new BsonDocument("_id", source.Id));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -6,8 +6,8 @@ using System.Text.Json.Serialization;
|
|||||||
using System.Text.Json;
|
using System.Text.Json;
|
||||||
using System.Threading.Tasks;
|
using System.Threading.Tasks;
|
||||||
|
|
||||||
namespace PrometheusAPI
|
namespace PrometheusAPI;
|
||||||
{
|
|
||||||
public static class JsonSetializerSetup
|
public static class JsonSetializerSetup
|
||||||
{
|
{
|
||||||
private static JsonSerializerOptions _options = new JsonSerializerOptions
|
private static JsonSerializerOptions _options = new JsonSerializerOptions
|
||||||
@ -22,4 +22,3 @@ namespace PrometheusAPI
|
|||||||
|
|
||||||
public static JsonSerializerOptions Options => _options;
|
public static JsonSerializerOptions Options => _options;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -1,7 +1,7 @@
|
|||||||
using System.Text.Json;
|
using System.Text.Json;
|
||||||
|
|
||||||
namespace PrometheusAPI
|
namespace PrometheusAPI;
|
||||||
{
|
|
||||||
public class PrometheusClient
|
public class PrometheusClient
|
||||||
{
|
{
|
||||||
private readonly HttpClient _client;
|
private readonly HttpClient _client;
|
||||||
@ -116,4 +116,3 @@ namespace PrometheusAPI
|
|||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
@ -1,8 +1,8 @@
|
|||||||
using System.Text.Json;
|
using System.Text.Json;
|
||||||
using System.Text.Json.Serialization;
|
using System.Text.Json.Serialization;
|
||||||
|
|
||||||
namespace PrometheusAPI
|
namespace PrometheusAPI;
|
||||||
{
|
|
||||||
internal class TimeSeriesCoverter : JsonConverter<TimeSeries?>
|
internal class TimeSeriesCoverter : JsonConverter<TimeSeries?>
|
||||||
{
|
{
|
||||||
public override TimeSeries? Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
|
public override TimeSeries? Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
|
||||||
@ -49,4 +49,3 @@ namespace PrometheusAPI
|
|||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user